Swap Nodes in Pairs

Problem

Given a linked list, swap every two adjacent nodes and return its head. You must solve the problem without modifying the values in the list’s nodes (i.e., only nodes themselves may be changed.)

Example 1:

Input: head = [1,2,3,4]
Output: [2,1,4,3]

Example 2:

Input: head = []
Output: []

Example 3:

Input: head = [1]
Output: [1]

Constraints:

  • The number of nodes in the list is in the range [0, 100].
  • 0 <= Node.val <= 100

Solution

I almost reached for an approach where I would reverse the entire linked list and worked backwards, but this was simpler.

/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    public ListNode swapPairs(ListNode head) {
        var curr = head;
        var next = head != null ? head.next : null;
        ListNode prev = null;

        // special case: first node
        head = next == null ? head : next;

        while (curr != null && next != null) {
            curr.next = next.next;
            next.next = curr;

            if (prev != null) {
                prev.next = next;
            }
            prev = curr;

            curr = curr.next;
            if (curr != null) {
                next = curr.next;
            }
        }

        return head;
    }
}

Recent posts from blogs that I like

Paintings of the Franco-Prussian War: 2 The Siege of Paris

As winter grew colder, Parisians started to starve. A city known for its food and restaurants had to scavenge meals based on horse, dog, cat and even rat.

via The Eclectic Light Company

Impromptu disaster recovery

via fasterthanlime

Notes on implementing Attention

Some notes on implementing attention blocks in pure Python + Numpy. The focus here is on the exact implementation in code, explaining all the shapes throughout the process. The motivation for why attention works is not covered here - there are plenty of excellent online resources explaining it. Seve...

via Eli Bendersky