Set Matrix Zeroes

Problem

Given an m x n integer matrix matrix, if an element is 0, set its entire row and column to 0’s.

You must do it in place.

Example 1:

Input: matrix = [[1,1,1],[1,0,1],[1,1,1]]
Output: [[1,0,1],[0,0,0],[1,0,1]]

Example 2:

Input: matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
Output: [[0,0,0,0],[0,4,5,0],[0,3,1,0]]

Constraints:

  • m == matrix.length
  • n == matrix[0].length
  • 1 <= m, n <= 200
  • -231 <= matrix[i][j] <= 231 - 1

Follow up:

  • A straightforward solution using O(mn) space is probably a bad idea.
  • A simple improvement uses O(m + n) space, but still not the best solution.
  • Could you devise a constant space solution?

Solution

class Solution {
    public void setZeroes(int[][] matrix) {
        var rows = matrix.length;
        var cols = matrix[0].length;
        var zeroFirstCol = false;
        var zeroFirstRow = false;

        // mark
        for (var row = 0; row < rows; row++) {
            for (var col = 0; col < cols; col++) {
                if (matrix[row][0] == 0) {
                    zeroFirstCol = true;
                }

                if (matrix[0][col] == 0) {
                    zeroFirstRow = true;
                }
            }
        }

        for (var row = 1; row < rows; row++) {
            for (var col = 1; col < cols; col++) {
                if (matrix[row][col] == 0) {
                    matrix[row][0] = 0;
                    matrix[0][col] = 0;
                }
            }
        }

        // act
        for (var row = 1; row < rows; row++) {
            for (var col = 1; col < cols; col++) {
                if (matrix[row][0] == 0 || matrix[0][col] == 0) {
                    matrix[row][col] = 0;
                }
            }
        }

        for (var row = 0; row < rows; row++) {
            for (var col = 0; col < cols; col++) {
                if (zeroFirstCol && col == 0) {
                    matrix[row][0] = 0;
                }
                if (zeroFirstRow && row == 0) {
                    matrix[0][col] = 0;
                }
            }
        }
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company