Minimum Spanning Tree

Question

There are n cities labeled from 1 to n. You are given the integer n and an array connections where connections[i] = [xi, yi, costi] indicates that the cost of connecting city xi and city yi (bidirectional connection) is costi.

Return the minimum cost to connect all the n cities such that there is at least one path between each pair of cities. If it is impossible to connect all the n cities, return -1,

The cost is the sum of the connections’ costs used.

Example 1:

Input: n = 3, connections = [[1,2,5],[1,3,6],[2,3,1]]
Output: 6
Explanation: Choosing any 2 edges will connect all cities so we choose the minimum 2.

Example 2:

Input: n = 4, connections = [[1,2,3],[3,4,4]]
Output: -1
Explanation: There is no way to connect all cities even if all edges are used.

Constraints:

  • 1 <= n <= 104
  • 1 <= connections.length <= 104
  • connections[i].length == 3
  • 1 <= xi, yi <= n
  • xi != yi
  • 0 <= costi <= 105

Solution

class Solution {
    int[] rank;
    int[] root;

    public int minimumCost(int n, int[][] connections) {
        rank = new int[n + 1];
        root = new int[n + 1];

        for (var i = 0; i < n; i++) {
            rank[i] = 1;
            root[i] = i;
        }

        Arrays.sort(connections, (l, r) -> {
            return Integer.compare(l[2], r[2]);
        });

        var cost = 0;
        for (var c : connections) {
            if (find(c[0]) != find(c[1])) {
                cost += c[2];
                union(c[0], c[1]);
            }
        }

        for (var i = 1; i < n; i++) {
            if (find(i) != find(i -1)) {
                return -1;
            }
        }

        return cost;
    }

    void union(int x, int y) {
        var rootX = root[x];
        var rootY = root[y];
        if (rank[rootX] > rank[rootY]) {
            rootX ^= rootY;
            rootY ^= rootX;
            rootX ^= rootY;
        }
        root[rootX] = rootY;
        rank[rootY] += rank[rootX];
    }

    int find(int x) {
        if (root[x] != x) {
            root[x] = find(root[x]);
        }
        return root[x];
    }
}

Recent posts from blogs that I like

AI assisted search-based research actually works now

via Simon Willison

Changing Paintings: 67 Circe and her swine

Ulysses visits Circe's island, where his crew are turned into swine. When she tries to do the same with him, he refuses. They marry and spend a year together.

via The Eclectic Light Company

I'm on GitHub Sponsors

If you wanted to give me money but Patreon was causing grief, I'm on GitHub Sponsors now! Help me reach my goal of saving the world from AI scrapers with the power of anime.

via Xe Iaso