Increasing Triplet Subsequence

Problem

Given an integer array nums, return true if there exists a triple of indices (i, j, k) such that i < j < k and nums[i] < nums[j] < nums[k]. If no such indices exists, return false.

Example 1:

Input: nums = [1,2,3,4,5]
Output: true
Explanation: Any triplet where i < j < k is valid.

Example 2:

Input: nums = [5,4,3,2,1]
Output: false
Explanation: No triplet exists.

Example 3:

Input: nums = [2,1,5,0,4,6]
Output: true
Explanation: The triplet (3, 4, 5) is valid because nums[3] == 0 < nums[4] == 4 < nums[5] == 6.

Constraints:

  • 1 <= nums.length <= 5 * 105
  • -231 <= nums[i] <= 231 - 1

Follow up: Could you implement a solution that runs in O(n) time complexity and O(1) space complexity?

Solution

class Solution {
    public boolean increasingTriplet(int[] nums) {
        var one = Integer.MAX_VALUE;
        var two = Integer.MAX_VALUE;
        for (var n : nums) {
            if (n <= one) {
                one = n;
            } else if (n <= two) {
                two = n;
            } else {
                return true;
            }
        }
        return false;
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company