The Earliest Moment When Everyone Become Friends

Problem

There are n people in a social group labeled from 0 to n - 1. You are given an array logs where logs[i] = [timestampi, xi, yi] indicates that xi and yi will be friends at the time timestampi.

Friendship is symmetric. That means if a is friends with b, then b is friends with a. Also, person a is acquainted with a person b if a is friends with b, or a is a friend of someone acquainted with b.

Return the earliest time for which every person became acquainted with every other person. If there is no such earliest time, return -1.

Example 1:

Input: logs = [[20190101,0,1],[20190104,3,4],[20190107,2,3],[20190211,1,5],[20190224,2,4],[20190301,0,3],[20190312,1,2],[20190322,4,5]], n = 6
Output: 20190301
Explanation:
The first event occurs at timestamp = 20190101, and after 0 and 1 become friends, we have the following friendship groups [0,1], [2], [3], [4], [5].
The second event occurs at timestamp = 20190104, and after 3 and 4 become friends, we have the following friendship groups [0,1], [2], [3,4], [5].
The third event occurs at timestamp = 20190107, and after 2 and 3 become friends, we have the following friendship groups [0,1], [2,3,4], [5].
The fourth event occurs at timestamp = 20190211, and after 1 and 5 become friends, we have the following friendship groups [0,1,5], [2,3,4].
The fifth event occurs at timestamp = 20190224, and as 2 and 4 are already friends, nothing happens.
The sixth event occurs at timestamp = 20190301, and after 0 and 3 become friends, we all become friends.

Example 2:

Input: logs = [[0,2,0],[1,0,1],[3,0,3],[4,1,2],[7,3,1]], n = 4
Output: 3
Explanation: At timestamp = 3, all the persons (i.e., 0, 1, 2, and 3) become friends.

Constraints:

  • 2 <= n <= 100
  • 1 <= logs.length <= 104
  • logs[i].length == 3
  • 0 <= timestampi <= 109
  • 0 <= xi, yi <= n - 1
  • xi != yi
  • All the values timestampi are unique.
  • All the pairs (xi, yi) occur at most one time in the input.

Solution

The most wholesome LeetCode problem.

class Solution {
    int[] root;
    int[] rank;

    public int earliestAcq(int[][] logs, int n) {
        root = new int[n];
        rank = new int[n];

        Arrays.sort(logs, (l, r) -> Integer.compare(l[0], r[0]));

        for (var i = 0; i < n; i++) {
            root[i] = i;
            rank[i] = 1;
        }

        var time = 0;

        for (var l : logs) {
            union(l[1], l[2]);
            time = l[0];

            var ok = true;
            for (int i = 1; i < n; i++) {
                if (find(i) != find(i - 1)) {
                    ok = false;
                    break;
                }
            }
            if (ok) {
                return time;
            }
        }

        return -1;
    }

    int find(int x) {
        if (root[x] != x) {
            root[x] = find(root[x]);
        }

        return root[x];
    }

    void union(int x, int y) {
        var rootX = find(x);
        var rootY = find(y);

        if (rank[rootX] > rank[rootY]) {
            rootX ^= rootY;
            rootY ^= rootX;
            rootX ^= rootY;
        }

        root[rootX] = rootY;
        rank[rootY] += rank[rootX];
    }
}

Recent posts from blogs that I like

Paintings of the Franco-Prussian War: 2 The Siege of Paris

As winter grew colder, Parisians started to starve. A city known for its food and restaurants had to scavenge meals based on horse, dog, cat and even rat.

via The Eclectic Light Company

Impromptu disaster recovery

via fasterthanlime

Notes on implementing Attention

Some notes on implementing attention blocks in pure Python + Numpy. The focus here is on the exact implementation in code, explaining all the shapes throughout the process. The motivation for why attention works is not covered here - there are plenty of excellent online resources explaining it. Seve...

via Eli Bendersky