Find Right Interval

Problem

You are given an array of intervals, where intervals[i] = [starti, endi] and each starti is unique.

The right interval for an interval i is an interval j such that startj >= endi and startj is minimized. Note that i may equal j.

Return an array of right interval indices for each interval i. If no right interval exists for interval i, then put -1 at index i.

Example 1:

Input: intervals = [[1,2]]
Output: [-1]
Explanation: There is only one interval in the collection, so it outputs -1.

Example 2:

Input: intervals = [[3,4],[2,3],[1,2]]
Output: [-1,0,1]
Explanation: There is no right interval for [3,4].
The right interval for [2,3] is [3,4] since start0 = 3 is the smallest start that is >= end1 = 3.
The right interval for [1,2] is [2,3] since start1 = 2 is the smallest start that is >= end2 = 2.

Example 3:

Input: intervals = [[1,4],[2,3],[3,4]]
Output: [-1,2,-1]
Explanation: There is no right interval for [1,4] and [3,4].
The right interval for [2,3] is [3,4] since start2 = 3 is the smallest start that is >= end1 = 3.

Constraints:

  • 1 <= intervals.length <= 2 * 104
  • intervals[i].length == 2
  • -106 <= starti <= endi <= 106
  • The start point of each interval is unique.

Solution

class Solution {
    public int[] findRightInterval(int[][] intervals) {
        var start = new PriorityQueue<Integer>((l, r) -> {
            return Integer.compare(intervals[l][0], intervals[r][0]);
        });
        var end = new PriorityQueue<Integer>((l, r) -> {
            return Integer.compare(intervals[l][1], intervals[r][1]);
        });
        for (int i = 0; i < intervals.length; i++) {
            end.offer(i);
            start.offer(i);
        }

        var ans = new int[intervals.length];
        Arrays.fill(ans, -1);

        while (!end.isEmpty()) {
            while (!start.isEmpty() && intervals[end.peek()][1] > intervals[start.peek()][0]) {
                start.poll();
            }
            if (start.isEmpty()) {
                break;
            }
            ans[end.poll()] = start.peek();
        }

        return ans;
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company