Course Schedule

Problem

There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.

  • For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.

Return true if you can finish all courses. Otherwise, return false.

Example 1:

Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Constraints:

  • 1 <= numCourses <= 2000
  • 0 <= prerequisites.length <= 5000
  • prerequisites[i].length == 2
  • 0 <= ai, bi < numCourses
  • All the pairs prerequisites[i] are unique.

Solution

Another Topological Sort

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        var m = new boolean[numCourses][numCourses];
        var indegree = new int[numCourses];
        var s = new Stack<Integer>();

        for (var p : prerequisites) {
            m[p[0]][p[1]] = true;
            indegree[p[0]] += 1;
        }

        for (var i = 0; i < numCourses; i++) {
            if (indegree[i] == 0) {
                s.push(i);
            }
        }

        var complete = 0;
        while (!s.isEmpty()) {
            var c = s.pop();
            complete += 1;
            for (var i = 0; i < numCourses; i++) {
                if (m[i][c]) {
                    indegree[i] -= 1;
                    if (indegree[i] == 0) {
                        s.push(i);
                    }
                }
            }
        }

        return complete == numCourses;
    }
}

Recursive DFS

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        // using DFS
        var m = new boolean[numCourses][numCourses];
        var gVisited = new boolean[numCourses];
        var lVisited = new boolean[numCourses];

        for (var p : prerequisites) {
            m[p[0]][p[1]] = true;
        }

        for (var i = 0; i < numCourses; i++) {
            if (!dfs(i, numCourses, m, gVisited, lVisited)) {
                return false;
            }
        }

        return true;
    }

    public boolean dfs(int i, int n, boolean[][] m, boolean[] gVisited, boolean[] lVisited) {
        if (lVisited[i]) {
            return false;
        }

        if (gVisited[i]) {
            return true;
        }

        gVisited[i] = true;
        lVisited[i] = true;

        // loop over every course that this vertex has an edge to
        for (var x = 0; x < n; x++) {
            if (m[i][x]) {
                // perform a dfs on x
                if (!dfs(x, n, m, gVisited, lVisited)) {
                    return false;
                }
            }
        }

        lVisited[i] = false;
        return true;
    }
}

Topological Sort

If the input can be topologically sorted (and thus that the input forms a DAG), then we know that the course schedule is possible.

First try!

class Solution {
    public boolean canFinish(int numCourses, int[][] prerequisites) {
        var indegree = new int[numCourses];
        var matrix = new boolean[numCourses][numCourses];
        for (var pair : prerequisites) {
            var course = pair[0];
            var prereq = pair[1];
            indegree[course] += 1;
            matrix[course][prereq] = true;
        }

        var next = new Stack<Integer>();

        for (int i = 0; i < numCourses; i++) {
            if (indegree[i] == 0) {
                next.push(i);
                // mark this node as complete
                indegree[i] = -1;
            }
        }

        while (!next.isEmpty()) {
            var c = next.pop();
            for (int i = 0; i < numCourses; i++) {
                if (matrix[i][c] == true) {
                    indegree[i] -= 1;
                    if (indegree[i] == 0) {
                        indegree[i] = -1;
                        next.push(i);
                    }
                }
            }
        }

        for (int i = 0; i < numCourses; i++) {
            if (indegree[i] != -1) {
                return false;
            }
        }

        return true;
    }
}

Recent posts from blogs that I like

Paintings of the Franco-Prussian War: 2 The Siege of Paris

As winter grew colder, Parisians started to starve. A city known for its food and restaurants had to scavenge meals based on horse, dog, cat and even rat.

via The Eclectic Light Company

Impromptu disaster recovery

via fasterthanlime

Notes on implementing Attention

Some notes on implementing attention blocks in pure Python + Numpy. The focus here is on the exact implementation in code, explaining all the shapes throughout the process. The motivation for why attention works is not covered here - there are plenty of excellent online resources explaining it. Seve...

via Eli Bendersky