Course Schedule
Problem
There are a total of numCourses courses you have to take, labeled from 0 to numCourses - 1. You are given an array prerequisites where prerequisites[i] = [ai, bi] indicates that you must take course bi first if you want to take course ai.
- For example, the pair [0, 1], indicates that to take course 0 you have to first take course 1.
Return true if you can finish all courses. Otherwise, return false.
Example 1:
Input: numCourses = 2, prerequisites = [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: numCourses = 2, prerequisites = [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Constraints:
- 1 <= numCourses <= 2000
- 0 <= prerequisites.length <= 5000
- prerequisites[i].length == 2
- 0 <= ai, bi < numCourses
- All the pairs prerequisites[i] are unique.
Solution
Another Topological Sort
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
var m = new boolean[numCourses][numCourses];
var indegree = new int[numCourses];
var s = new Stack<Integer>();
for (var p : prerequisites) {
m[p[0]][p[1]] = true;
indegree[p[0]] += 1;
}
for (var i = 0; i < numCourses; i++) {
if (indegree[i] == 0) {
s.push(i);
}
}
var complete = 0;
while (!s.isEmpty()) {
var c = s.pop();
complete += 1;
for (var i = 0; i < numCourses; i++) {
if (m[i][c]) {
indegree[i] -= 1;
if (indegree[i] == 0) {
s.push(i);
}
}
}
}
return complete == numCourses;
}
}
Recursive DFS
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
// using DFS
var m = new boolean[numCourses][numCourses];
var gVisited = new boolean[numCourses];
var lVisited = new boolean[numCourses];
for (var p : prerequisites) {
m[p[0]][p[1]] = true;
}
for (var i = 0; i < numCourses; i++) {
if (!dfs(i, numCourses, m, gVisited, lVisited)) {
return false;
}
}
return true;
}
public boolean dfs(int i, int n, boolean[][] m, boolean[] gVisited, boolean[] lVisited) {
if (lVisited[i]) {
return false;
}
if (gVisited[i]) {
return true;
}
gVisited[i] = true;
lVisited[i] = true;
// loop over every course that this vertex has an edge to
for (var x = 0; x < n; x++) {
if (m[i][x]) {
// perform a dfs on x
if (!dfs(x, n, m, gVisited, lVisited)) {
return false;
}
}
}
lVisited[i] = false;
return true;
}
}
Topological Sort
If the input can be topologically sorted (and thus that the input forms a DAG), then we know that the course schedule is possible.
First try!
class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
var indegree = new int[numCourses];
var matrix = new boolean[numCourses][numCourses];
for (var pair : prerequisites) {
var course = pair[0];
var prereq = pair[1];
indegree[course] += 1;
matrix[course][prereq] = true;
}
var next = new Stack<Integer>();
for (int i = 0; i < numCourses; i++) {
if (indegree[i] == 0) {
next.push(i);
// mark this node as complete
indegree[i] = -1;
}
}
while (!next.isEmpty()) {
var c = next.pop();
for (int i = 0; i < numCourses; i++) {
if (matrix[i][c] == true) {
indegree[i] -= 1;
if (indegree[i] == 0) {
indegree[i] = -1;
next.push(i);
}
}
}
}
for (int i = 0; i < numCourses; i++) {
if (indegree[i] != -1) {
return false;
}
}
return true;
}
}