Count and Say

Problem

The count-and-say sequence is a sequence of digit strings defined by the recursive formula:

  • countAndSay(1) = “1”
  • countAndSay(n) is the run-length encoding of countAndSay(n - 1).

Run-length encoding (RLE) is a string compression method that works by replacing consecutive identical characters (repeated 2 or more times) with the concatenation of the character and the number marking the count of the characters (length of the run). For example, to compress the string “3322251” we replace “33” with “23”, replace “222” with “32”, replace “5” with “15” and replace “1” with “11”. Thus the compressed string becomes “23321511”.

Given a positive integer n, return the nth element of the count-and-say sequence.

Example 1:

Input: n = 4

Output: "1211"

Explanation:

countAndSay(1) = "1"
countAndSay(2) = RLE of "1" = "11"
countAndSay(3) = RLE of "11" = "21"
countAndSay(4) = RLE of "21" = "1211"

Example 2:

Input: n = 1

Output: "1"

Explanation:

This is the base case.

Constraints:

  • 1 <= n <= 30

Follow up: Could you solve it iteratively?

Solution

class Solution {
    public String countAndSay(int n) {
        if (n == 1) {
            return "1";
        }

        var result = countAndSay(n - 1).toCharArray();
        var sb = new StringBuilder();
        var curr = 'a';
        var quan = 0;

        for (var c : result) {
            if (curr == c) {
                quan += 1;
            } else {
                if (curr != 'a') {
                    sb.append(String.valueOf(quan));
                    sb.append(curr);
                }
                curr = c;
                quan = 1;
            }
        }
        sb.append(String.valueOf(quan));
        sb.append(curr);
        return sb.toString();
    }
}

Another Approach

public String countAndSay(int n) {
    var str = "1";
    for (var i = 2; i <= n; i++) {
        var newStr = "";
        // we want to overwrite the string
        // iterate over the current string
        var count = 1;
        for (var x = 0; x < str.length(); x++) {
            // there are two cases: the this char is the same as the next, or it isn't. if it isn't, it might be because we're out of bounds
            // bounds check always first
            if (x + 1 < str.length() && str.charAt(x + 1) == str.charAt(x)) {
                // match!
                count += 1;
            } else {
                // no match
                newStr = newStr + count + str.charAt(x);
                count = 1;
            }
        }
        str = newStr;
    }
    return str;
}

Extension

Reverse count and say

public void reverse(String s, int index, String prev, String curr, List<String> ans) {
    if (index == s.length()) {
        if (curr.isEmpty()) {
            ans.add(prev);
        }
        return;
    }

    // keep building the chain
    reverse(s, index + 1, prev, curr + s.charAt(index), ans);

    if (!curr.isEmpty()) {
        var quantity = Integer.valueOf(curr);
        var character = s.charAt(index);
        for (int i = 0; i < quantity; i++) {
            prev = prev + character;
        }
        // we can consume this
        reverse(s, index + 1, prev, "", ans);
    }
}

Recent posts from blogs that I like

Paintings of the Franco-Prussian War: 2 The Siege of Paris

As winter grew colder, Parisians started to starve. A city known for its food and restaurants had to scavenge meals based on horse, dog, cat and even rat.

via The Eclectic Light Company

Impromptu disaster recovery

via fasterthanlime

Notes on implementing Attention

Some notes on implementing attention blocks in pure Python + Numpy. The focus here is on the exact implementation in code, explaining all the shapes throughout the process. The motivation for why attention works is not covered here - there are plenty of excellent online resources explaining it. Seve...

via Eli Bendersky