Combination Sum II

Problem

Given a collection of candidate numbers (candidates) and a target number (target), find all unique combinations in candidates where the candidate numbers sum to target.

Each number in candidates may only be used once in the combination.

Note: The solution set must not contain duplicate combinations.

Example 1:

Input: candidates = [10,1,2,7,6,1,5], target = 8
Output:
[
    [1,1,6],
    [1,2,5],
    [1,7],
    [2,6]
]

Example 2:

Input: candidates = [2,5,2,1,2], target = 5
Output:
[
    [1,2,2],
    [5]
]

Constraints:

  • 1 <= candidates.length <= 100
  • 1 <= candidates[i] <= 50
  • 1 <= target <= 30

Solution

class Solution {
    public List<List<Integer>> combinationSum2(int[] candidates, int target) {
        var ans = new ArrayList<List<Integer>>();
        var counter = new HashMap<Integer, Integer>();
        for (var i : candidates) {
            counter.merge(i, 1, Integer::sum);
        }
        solve(counter, target, List.of(), ans);
        return ans;
    }

    public void solve(Map<Integer, Integer> m, int target, List<Integer> curr, List<List<Integer>> ans) {
        var sum = curr.stream().reduce(Integer::sum).orElse(0);
        if (sum == target) {
            ans.add(curr);
            return;
        }

        if (m.isEmpty()) {
            return;
        }

        var next = m.entrySet().iterator().next();

        // two options: take some/all or take none

        // case: none:
        var newMap = new HashMap<>(m);
        newMap.remove(next.getKey());

        solve(newMap, target, curr, ans);

        // case: some/all
        var l = new ArrayList<>(curr);
        var acc = sum;
        for (int i = 0; i < next.getValue(); i++) {
            if (acc + next.getKey() <= target) {
                acc += next.getKey();
                l.add(next.getKey());
                solve(newMap, target, l, ans);
            }
        }
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company