All Paths from Source to Target

Problem

Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths from node 0 to node n - 1 and return them in any order.

The graph is given as follows: graph[i] is a list of all nodes you can visit from node i (i.e., there is a directed edge from node i to node graph[i][j]).

Example 1:

Input: graph = [[1,2],[3],[3],[]] Output: [[0,1,3],[0,2,3]] Explanation: There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Example 2:

Input: graph = [[4,3,1],[3,2,4],[3],[4],[]] Output: [[0,4],[0,3,4],[0,1,3,4],[0,1,2,3,4],[0,1,4]]

Constraints:

  • n == graph.length
  • 2 <= n <= 15
  • 0 <= graph[i][j] < n
  • graph[i][j] != i (i.e., there will be no self-loops).
  • All the elements of graph[i] are unique.
  • The input graph is guaranteed to be a DAG.

Solution

class Solution {
    public List<List<Integer>> allPathsSourceTarget(int[][] graph) {
        var ans = new ArrayList<List<Integer>>();
        solve(graph, List.of(0), ans);
        return ans;
    }

    public void solve(int[][] graph, List<Integer> curr, List<List<Integer>> ans) {
        var n = curr.get(curr.size() - 1);
        if (n == graph.length - 1) {
            ans.add(curr);
            return;
        }

        for (var e : graph[n]) {
            var l = new ArrayList<>(curr);
            l.add(e);
            solve(graph, l, ans);
        }
    }
}

Recent posts from blogs that I like

Reading Visual Art: 183 Sewing for a purpose

Sewing for Garibaldi's redshirts, the flag of a castle, Sir Lancelot, fishermen and sailors, Pentecost costumes, and other purposes.

via The Eclectic Light Company

DeepSeek-R1 and exploring DeepSeek-R1-Distill-Llama-8B

via Simon Willison

FOSDEM '25 protest

Last week, I wrote to object to Jack Dorsey and his company, Block, Inc., being accepted as main track speakers at FOSDEM, and proposed a protest action in response. FOSDEM issued a statement about our plans on Thursday. Today, I have some updates for you regarding the planned action. I would like t...

via Drew DeVault