First Missing Positive

Problem

Given an unsorted integer array nums. Return the smallest positive integer that is not present in nums.

You must implement an algorithm that runs in O(n) time and uses O(1) auxiliary space.

Example 1:

Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.

Example 2:

Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.

Example 3:

Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.

Constraints:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

Solution

Another Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        var i = 0;
        while (i < nums.length) {
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[nums[i] - 1]) {
                swap(nums, i, nums[i] - 1);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int l, int r) {
        nums[l] ^= nums[r];
        nums[r] ^= nums[l];
        nums[l] ^= nums[r];
    }
}

Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        // cyclic sort
        var i = 0;
        while (i < nums.length) {
            var dst = nums[i] - 1;
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[dst]) {
                swap(nums, i, dst);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int x, int y) {
        var tmp = nums[x];
        nums[x] = nums[y];
        nums[y] = tmp;
    }
}

XOR

This didn’t work because the array allows duplicate numbers :/

class Solution {
    public int firstMissingPositive(int[] nums) {
        var x = 0;
        var min = Integer.MAX_VALUE;
        var max = Integer.MIN_VALUE;
        for (var n : nums) {
            if (n < 1) {
                continue;
            }
            min = Math.min(min, n);
            max = Math.max(max, n);
            x ^= n;
        }
        if (min > 1) {
            return 1;
        }
        for (var i = min; i <= max; i++) {
            x ^= i;
        }
        if (x == 0) {
            return max + 1;
        }
        return x;
    }
}

Recent posts from blogs that I like

From the Commedia dell’Arte to Punch and Judy 1

Pierrot, Harlequin and other characters from the early professional theatre seen in paintings by Watteau, Goya and others.

via The Eclectic Light Company

Bloom filters

The original motivation for the creation of Bloom filters is efficient set membership, using a probabilistic approach to significantly reduce the time and space required to reject items that are not members in a certain set. The data structure was proposed by Burton Bloom in a 1970 paper titled "Spa...

via Eli Bendersky

Two publishers and three authors fail to understand what "vibe coding" means

via Simon Willison