First Missing Positive

Problem

Given an unsorted integer array nums. Return the smallest positive integer that is not present in nums.

You must implement an algorithm that runs in O(n) time and uses O(1) auxiliary space.

Example 1:

Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.

Example 2:

Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.

Example 3:

Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.

Constraints:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

Solution

Another Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        var i = 0;
        while (i < nums.length) {
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[nums[i] - 1]) {
                swap(nums, i, nums[i] - 1);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int l, int r) {
        nums[l] ^= nums[r];
        nums[r] ^= nums[l];
        nums[l] ^= nums[r];
    }
}

Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        // cyclic sort
        var i = 0;
        while (i < nums.length) {
            var dst = nums[i] - 1;
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[dst]) {
                swap(nums, i, dst);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int x, int y) {
        var tmp = nums[x];
        nums[x] = nums[y];
        nums[y] = tmp;
    }
}

XOR

This didn’t work because the array allows duplicate numbers :/

class Solution {
    public int firstMissingPositive(int[] nums) {
        var x = 0;
        var min = Integer.MAX_VALUE;
        var max = Integer.MIN_VALUE;
        for (var n : nums) {
            if (n < 1) {
                continue;
            }
            min = Math.min(min, n);
            max = Math.max(max, n);
            x ^= n;
        }
        if (min > 1) {
            return 1;
        }
        for (var i = min; i <= max; i++) {
            x ^= i;
        }
        if (x == 0) {
            return max + 1;
        }
        return x;
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company