First Missing Positive

Problem

Given an unsorted integer array nums. Return the smallest positive integer that is not present in nums.

You must implement an algorithm that runs in O(n) time and uses O(1) auxiliary space.

Example 1:

Input: nums = [1,2,0]
Output: 3
Explanation: The numbers in the range [1,2] are all in the array.

Example 2:

Input: nums = [3,4,-1,1]
Output: 2
Explanation: 1 is in the array but 2 is missing.

Example 3:

Input: nums = [7,8,9,11,12]
Output: 1
Explanation: The smallest positive integer 1 is missing.

Constraints:

  • 1 <= nums.length <= 105
  • -231 <= nums[i] <= 231 - 1

Solution

Another Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        var i = 0;
        while (i < nums.length) {
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[nums[i] - 1]) {
                swap(nums, i, nums[i] - 1);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int l, int r) {
        nums[l] ^= nums[r];
        nums[r] ^= nums[l];
        nums[l] ^= nums[r];
    }
}

Cyclic Sort

class Solution {
    public int firstMissingPositive(int[] nums) {
        // cyclic sort
        var i = 0;
        while (i < nums.length) {
            var dst = nums[i] - 1;
            if (nums[i] > 0 && nums[i] <= nums.length && nums[i] != nums[dst]) {
                swap(nums, i, dst);
            } else {
                i += 1;
            }
        }

        for (i = 0; i < nums.length; i++) {
            if (nums[i] != i + 1) {
                return i + 1;
            }
        }

        return nums.length + 1;
    }

    void swap(int[] nums, int x, int y) {
        var tmp = nums[x];
        nums[x] = nums[y];
        nums[y] = tmp;
    }
}

XOR

This didn’t work because the array allows duplicate numbers :/

class Solution {
    public int firstMissingPositive(int[] nums) {
        var x = 0;
        var min = Integer.MAX_VALUE;
        var max = Integer.MIN_VALUE;
        for (var n : nums) {
            if (n < 1) {
                continue;
            }
            min = Math.min(min, n);
            max = Math.max(max, n);
            x ^= n;
        }
        if (min > 1) {
            return 1;
        }
        for (var i = min; i <= max; i++) {
            x ^= i;
        }
        if (x == 0) {
            return max + 1;
        }
        return x;
    }
}

Recent posts from blogs that I like

How often do LLMs snitch? Recreating Theo's SnitchBench with LLM

via Simon Willison

Painting and Photography: Early experiments

JMW Turner photographed in a dageurreotype in 1847, paintings mocking early photographers, then their influence over views, and used by Thomas Eakins.

via The Eclectic Light Company

The virtue of unsynn

via fasterthanlime