Search Insert Position

Problem

Given a sorted array of distinct integers and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [1,3,5,6], target = 5
Output: 2

Example 2:

Input: nums = [1,3,5,6], target = 2
Output: 1

Example 3:

Input: nums = [1,3,5,6], target = 7
Output: 4

Constraints:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums contains distinct values sorted in ascending order.
  • -104 <= target <= 104

Solution

class Solution {
    public int searchInsert(int[] nums, int target) {
        var left = 0;
        var right = nums.length - 1;

        while (left <= right) {
            var middle = left + ((right - left) / 2);
            var n = nums[middle];
            if (n == target) {
                return middle;
            } else if (n < target) {
                // check the right half
                left = middle + 1;
            } else {
                // check the left half
                right = middle - 1;
            }
        }

        return left;
    }
}

Standard Library

class Solution {
    public int searchInsert(int[] nums, int target) {
        var pos = Arrays.binarySearch(nums, target);
        if (pos < 0) {
            pos = (pos + 1) * -1;
        }
        return pos;
    }
}

Recent posts from blogs that I like

Painting poetry: John Keats

Paintings based on Endymion, The Eve of St. Agnes, and La Belle Dame Sans Merci, mainly from the Pre-Raphaelites.

via The Eclectic Light Company

Live blog: the 12th day of OpenAI - "Early evals for OpenAI o3"

via Simon Willison

Turing Machines

body { text-wrap: pretty; } @media (prefers-reduced-motion: reduce) { * { transition: none; animation: none; } } turing-machine { width: 100%; display: block; position: relative; padding-bottom: 1em; } turing-machine .program-container { position: relative; display: flex; justify-content: center; } ...

via Sam Rose