Find if Path Exists in Graph

Problem

There is a bi-directional graph with n vertices, where each vertex is labeled from 0 to n - 1 (inclusive). The edges in the graph are represented as a 2D integer array edges, where each edges[i] = [ui, vi] denotes a bi-directional edge between vertex ui and vertex vi. Every vertex pair is connected by at most one edge, and no vertex has an edge to itself.

You want to determine if there is a valid path that exists from vertex source to vertex destination.

Given edges and the integers n, source, and destination, return true if there is a valid path from source to destination, or false otherwise.

Example 1:

Input: n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
Output: true
Explanation: There are two paths from vertex 0 to vertex 2:

- 0 → 1 → 2
- 0 → 2

Example 2:

Input: n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
Output: false
Explanation: There is no path from vertex 0 to vertex 5.

Constraints:

  • 1 <= n <= 2 * 105
  • 0 <= edges.length <= 2 * 105
  • edges[i].length == 2
  • 0 <= ui, vi <= n - 1
  • ui != vi
  • 0 <= source, destination <= n - 1
  • There are no duplicate edges.
  • There are no self edges.

Solution

Another Union Find

Disjoint set from memory.

class Solution {
    int[] root;
    int[] rank;
    public boolean validPath(int n, int[][] edges, int source, int destination) {
        root = new int[n];
        rank = new int[n];

        for (int i = 0; i < n; i++) {
            root[i] = i;
            rank[i] = 1;
        }

        for (var e : edges) {
            union(e[0], e[1]);
        }

        return find(source) == find(destination);
    }

    int find(int x) {
        if (root[x] != x) {
            root[x] = find(root[x]);
        }
        return root[x];
    }

    void union(int x, int y) {
        var rootX = find(x);
        var rootY = find(y);
        if (rank[rootX] > rank[rootY]) {
            rootX ^= rootY;
            rootY ^= rootX;
            rootX ^= rootY;
        }
        root[rootX] = rootY;
        rank[rootY] += rank[rootX];
    }
}

Union Find

class Solution {
    int[] root;
    int[] rank;

    public boolean validPath(int n, int[][] edges, int source, int destination) {
        this.rank = new int[n];
        this.root = new int[n];

        for (var i = 0; i < n; i++) {
            this.root[i] = i;
            this.rank[i] = i;
        }

        for (var e : edges) {
            union(e[0], e[1]);
        }

        return find(source) == find(destination);
    }

    public int find(int x) {
        if (root[x] != x) {
            root[x] = find(root[x]);
        }
        return root[x];
    }

    public void union(int x, int y) {
        int rootX = find(x);
        int rootY = find(y);
        if (rootX != rootY) {
            if (rank[rootX] > rank[rootY]) {
                rootX ^= rootY;
                rootY ^= rootX;
                rootX ^= rootY;
            }
            root[rootX] = rootY;
            rank[rootY] += rank[rootX];
        }
    }
}

Iterative DFS

class Solution {
    public boolean validPath(int n, int[][] edges, int source, int destination) {
        var m = new boolean[n][n];
        var visited = new boolean[n];
        for (var e : edges) {
            m[e[0]][e[1]] = true;
            m[e[1]][e[0]] = true;
        }
        return dfs(m, n, source, destination, visited);
    }

    boolean dfs(boolean[][] m, int n, int source, int d, boolean[] visited) {
        var stack = new Stack<Integer>();
        stack.add(source);

        while (!stack.isEmpty()) {
            var s = stack.pop();

            if (s == d) {
                return true;
            }

            visited[s] = true;

            for (var i = 0; i < n; i++) {
                if (m[s][i] && !visited[i]) {
                    stack.add(i);
                }
            }
        }

        return false;
    }
}

DFS

class Solution {
    public boolean validPath(int n, int[][] edges, int source, int destination) {
        var m = new boolean[n][n];
        var visited = new boolean[n];
        for (var e : edges) {
            m[e[0]][e[1]] = true;
            m[e[1]][e[0]] = true;
        }
        return dfs(m, n, source, destination, visited);
    }

    boolean dfs(boolean[][] m, int n, int s, int d, boolean[] visited) {
        if (s == d) {
            return true;
        }

        if (visited[s]) {
            return false;
        } else {
            visited[s] = true;
        }

        // for each edge at this node, call dfs
        for (var i = 0; i < n; i++) {
            if (m[s][i] && dfs(m, n, i, d, visited)) {
                return true;
            }
        }

        return false;
    }
}

Recent posts from blogs that I like

Paintings of Saint-Tropez: Colour, boats and bathers 2

Paintings by Paul Signac, Maximilien Luce, and Pierre Bonnard showing fishing boats, trees and bathers near this smalll fishing village on the Mediterranean coast.

via The Eclectic Light Company

Run LLMs on macOS using llm-mlx and Apple's MLX framework

via Simon Willison

How to add a directory to your PATH

I was talking to a friend about how to add a directory to your PATH today. It’s something that feels “obvious” to me since I’ve been using the terminal for a long time, but when I searched for instructions for how to do it, I actually couldn’t find something that explained all of the steps – a lot o...

via Julia Evans