Linked List Cycle

Problem

Given head, the head of a linked list, determine if the linked list has a cycle in it.

There is a cycle in a linked list if there is some node in the list that can be reached again by continuously following the next pointer. Internally, pos is used to denote the index of the node that tail’s next pointer is connected to. Note that pos is not passed as a parameter.

Return true if there is a cycle in the linked list. Otherwise, return false.

Example 1:

Input: head = [3,2,0,-4], pos = 1
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 1st node (0-indexed).

Example 2:

Input: head = [1,2], pos = 0
Output: true
Explanation: There is a cycle in the linked list, where the tail connects to the 0th node.

Example 3:

Input: head = [1], pos = -1
Output: false
Explanation: There is no cycle in the linked list.

Constraints:

  • The number of the nodes in the list is in the range [0, 104].
  • -105 <= Node.val <= 105
  • pos is -1 or a valid index in the linked-list.

Follow up: Can you solve it using O(1) (i.e. constant) memory?

Solution

I think this is a classic fast/slow pointer problem. The goal is to determine if a given linked list contains a cycle. We can do this by iterating over every node until the next node is null. We have one pointer go one node at a time, and another pointer go two nodes at a time. If the nodes ever point to the same node, then we know there is a cycle. If next is ever null, we know that there definitely isn’t a cycle.

/**
 * Definition for singly-linked list.
 * class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) {
 *         val = x;
 *         next = null;
 *     }
 * }
 */
public class Solution {
    public boolean hasCycle(ListNode head) {
        var slow = head;
        var fast = head;
        while (slow != null && fast != null) {
            if (slow.next != null) {
                slow = slow.next;
            } else {
                return false;
            }
            if (fast.next != null && fast.next.next != null) {
                fast = fast.next.next;
            } else {
                return false;
            }
            if (fast == slow) {
                return true;
            }
        }
        // this case hits when head is null
        return false;
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company