Left and Right Sum Differences

Problem

Given a 0-indexed integer array nums, find a 0-indexed integer array answer where:

  • answer.length == nums.length.
  • answer[i] = |leftSum[i] - rightSum[i]|.

Where:

  • leftSum[i] is the sum of elements to the left of the index i in the array nums. If there is no such element, leftSum[i] = 0.
  • rightSum[i] is the sum of elements to the right of the index i in the array nums. If there is no such element, rightSum[i] = 0.

Return the array answer.

Example 1:

Input: nums = [10,4,8,3]
Output: [15,1,11,22]
Explanation: The array leftSum is [0,10,14,22] and the array rightSum is [15,11,3,0].
The array answer is [|0 - 15|,|10 - 11|,|14 - 3|,|22 - 0|] = [15,1,11,22].

Example 2:

Input: nums = [1]
Output: [0]
Explanation: The array leftSum is [0] and the array rightSum is [0].
The array answer is [|0 - 0|] = [0].

Constraints:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 105

Solution

One Pass

class Solution {
    public int[] leftRightDifference(int[] nums) {
        var ans = new int[nums.length];
        var lsum = 0;
        var rsum = 0;
        var isOdd = nums.length % 2 == 1;
        var half = nums.length / 2;
        for (var i = 0; i < nums.length; i++) {
            // left side
            ans[i] = Math.abs(ans[i] + lsum);
            lsum += nums[i];

            // right side
            var opp = nums.length - i - 1;
            if ((isOdd && opp <= half) || opp < half) {
                ans[opp] = Math.abs(ans[opp] - rsum);
            } else {
                ans[opp] = ans[opp] - rsum;
            }
            rsum += nums[opp];
        }
        return ans;
    }
}

Recent posts from blogs that I like

An Introduction to Google’s Approach to AI Agent Security

via Simon Willison

Notes on Cramer's rule

Cramer's rule is a clever solution to the classical system of linear equations Ax=b: \[\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{bmatrix} \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix} = \begin{bmatrix}b_1 \\ b_2 \\ b_3\end{bmatrix}\] Usi...

via Eli Bendersky

Brandjes: Paintings as witnesses to fires 1640-1813

Dramatic paintings of towns and cities on fire, usually at night, were popular during the Dutch Golden Age, and known as brandjes. Examples to well into the 19th century.

via The Eclectic Light Company