Check if Array is Sorted and Rotated

Problem

Given an array nums, return true if the array was originally sorted in non-decreasing order, then rotated some number of positions (including zero). Otherwise, return false.

There may be duplicates in the original array.

Note: An array A rotated by x positions results in an array B of the same length such that A[i] == B[(i+x) % A.length], where % is the modulo operation.

Example 1:

Input: nums = [3,4,5,1,2]
Output: true
Explanation: [1,2,3,4,5] is the original sorted array.
You can rotate the array by x = 3 positions to begin on the the element of value 3: [3,4,5,1,2].

Example 2:

Input: nums = [2,1,3,4]
Output: false
Explanation: There is no sorted array once rotated that can make nums.

Example 3:

Input: nums = [1,2,3]
Output: true
Explanation: [1,2,3] is the original sorted array.
You can rotate the array by x = 0 positions (i.e. no rotation) to make nums.

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 100

Solution

class Solution {
    public boolean check(int[] nums) {
        var breaks = 0;

        if (nums[0] < nums[nums.length - 1]) {
            breaks += 1;
        }

        for (int i = 1; i < nums.length; i++) {
            if (nums[i] < nums[i - 1]) {
                breaks += 1;
            }
            if (breaks > 1) {
                return false;
            }
        }

        return true;
    }
}

Recent posts from blogs that I like

Paintings of the Franco-Prussian War: 2 The Siege of Paris

As winter grew colder, Parisians started to starve. A city known for its food and restaurants had to scavenge meals based on horse, dog, cat and even rat.

via The Eclectic Light Company

Impromptu disaster recovery

via fasterthanlime

Notes on implementing Attention

Some notes on implementing attention blocks in pure Python + Numpy. The focus here is on the exact implementation in code, explaining all the shapes throughout the process. The motivation for why attention works is not covered here - there are plenty of excellent online resources explaining it. Seve...

via Eli Bendersky